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Reversible Trapping on a Cubic Lattice: 
Comparison of Theory and Simulations 

Peter M. Richards ~ and Attila Szabo 2 

Simulations of the kinetics of the reversible diffusion-influenced reaction 
A + B ~_ AB on a cubic lattice, with initial conditions [A] = [B], [AB] = 0, are 
compared with the predictions of two approximate theoretical formalisms. The 
first involves a simple rate equation with rate coefficients that are proportional 
to the time-dependent rate coefficient for an irreversible reaction. The second, 
which is based on a superposition approximation, contains a rate coefficient 
that explicitly depends on the bulk concentrations. Both reduce to the 
Smoluchowski approach in the irreversible limit. The results obtained using 
the modified rate equation formalism are exact at short times, but tend to 
approach equilibrium too rapidly. The predictions of the computationally more 
demanding superposition formalism agree remarkably well with the simulations 
for all times for the range of parameters examined. 
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superposition approximation; cubic lattice. 

1. I N T R O D U C T I O N  

Recen t ly  R i c h a r d s  (1) s tud ied  the  t ime  d e p e n d e n c e  of  t r a p p i n g  and  de t r ap -  

p ing  of  p o i n t  par t ic les  by s a tu rab l e  p o i n t  t raps  on  a s imple  cub ic  lat t ice.  

Th is  sys tem is a prototype of  a reversible di f fus ion- in f luenced  r eac t i on  

A + B ~ AB, where  the  A 's  a re  the  par t ic les  a n d  the  B's  a re  the  t raps.  Since 

a B can  reac t  w i th  on ly  a single A, the  t raps  can  sa tura te .  F o r  the  ini t ial  

c o n d i t i o n  where  the  c o n c e n t r a t i o n  o f  fil led t raps  is ze ro  a n d  the  c o n c e n t r a -  

t ions  of  par t ic les  a n d  t raps  are  equa l ,  the  k ine t ics  of  this r eac t i on  was 

s i m u l a t e d  a n d  the  resul ts  c o m p a r e d  wi th  the  p red ic t ions  of  an  effective ra te  
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equation based on an average correlation (AC) approximation. Szabo (2) 
has recently considered a variety of theoretical approaches to the descrip- 
tion of reversible reactions in a three-dimensional continuum. Szabo and 
Zwanzig/3) compared the predictions of these formalisms with simulations 
of a pseudo-first-order reaction on a one-dimensional lattice. A bimolecular 
reaction is pseudo first order when the concentration of one of the species 
is in such a large excess that it is essentially independent of time. This 
paper presents results of an analogous comparison for a second-order 
reaction on a three-dimensional lattice. 

The outline is as follows. In Section2, we first review the 
Smoluchowski approach to irreversible diffusion-influenced, second-order 
reactions in a three-dimensional continuum. We then summarize the 
analogous formalism when the species undergo a continuous-time random 
walk on a lattice. In Section 3, we present various approaches to the 
description of reversible reactions. The emphasis is placed on the mathe- 
matical structure of these formalisms. For  both the continuum and lattice 
descriptions, these formalisms can be implemented once the equilibrium 
constant and the time-dependent rate coefficient for an irreversible reaction 
are specified. In Section 4, simulation and theoretical results are compared. 
Section 5 contains some concluding remarks. 

2. I R R E V E R S I B L E  R E A C T I O N S  

To establish notation, we briefly review the standard treatment of the 
kinetics of the irreversible diffusion-influenced reaction A + B ~ AB. We 
assume that A and B are spherical and noninteracting. They diffuse freely 
until they come in contact at separation R. The reaction at contact is 
described by the partially reflecting or radiation boundary condition of 
Collins and Kimball, (5) which involves an intrinsic bimolecular association 
rate coefficient ~:a. Given an initial random distribution, the concentrations 
satisfy 

d[A]  d [B]  
- - -  k ( t ) [A]  [B]  (1) 

dt dt 

where the time-dependent rate coefficient is related to the A-B pair dis- 
tribution function at contact via k(t)=~cap(R, t). The pair distribution 
function satisfies the diffusion equation, involving the relative diffusion 
coefficient D, with initial condition p(r, 0) = 1 and subject to the boundary 
condition 

4~zDR2 \ Or Jr=R=~c~P(R' t) (2) 
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This procedure yields/5) 

~cu+k~s 1 + e~2Oterfc(72Dt) 1/2 (3) 

where ~ = (1 + ~ca/ks)/R and 

k s = 4~DR (4) 

The initial and final values of k(t) are 

I ,(0)  = ~o (5)  

~c aks 
k ( ~ )  = - -  (6) 

~ca+ks 

Moreover, as t --, 0% Eq. (3) behaves as 

lim k( t )=k(oo)  1 -I- 4~D,~Dt,1/2+ ... (7) 

When ~ca ~> ks, and therefore k(0)~> k(oo), the reaction is said to be diffu- 
sion-controlled. As ~c~/ks--, O, k(O)= k( oo )= x~ and the reaction-controlled 
limit is approached. 

Finally, we note that (6) 

k( t )= ~c,S(tl R) (8) 

where S( t lR)  is the probability that an isolated pair A B, initially at 
contact, has not yet reacted at time t to form AB (in other words, it is the 
survival probability of a contact pair). The lattice analogue of this relation 
witl be used here to simulate k(t) (see below). 

Let us now consider the corresponding formalism for an irreversible 
reaction on a lattice. We assume that the A's are noninteracting point par- 
ticles that undergo a random walk in continuous time on the lattice. The 
B's are static point traps. Let Wa be the hopping rate of a particle into an 
empty trap from a nearest neighbor site. The hopping rate into a filled trap 
is zero. Let W be the particle hopping rate between nearest neighbor sites 
not occupied by traps. We express concentrations as the number of species/ 
total number of lattice sites. 

For  an initial random distribution of particles, the concentrations 
satisfy Eq. (1) with a k(t) given by the lattice analogue of Eq. (8). For  a 
simple cubic lattice (see ref. 3 for a one-dimensional lattice), this can be 
obtained by setting 

~a=6W~ (9) 
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and identifying S(tIR) with the survival probability of a point particle 
initially at a site neighboring a single trap. Since this survival probability 
can be readily simulated, the time dependence of k(t) can be obtained even 
in the absence of an analytic expression such as Eq. (3). 

For a simple cubic lattice, it can be shown (7) that k(oo) has the same 
form as the continuum result in Eq. (6), when xa is given by Eq. (9) and 
k s is given by 

6W 
ks = I -  1 (10) 

where I =  1.516386... is related to the Watson integral. (8~ Moreover, the 
asymptotic behavior of k(t) is given by Eq. (7) when D is identified with W 
(unit lattice constant is assumed). From these results, it follows that the 
initial and final values of k(t) are related by k(0) = (1 + 0.516Wa/W) k(oo). 
When Wa= IV, k(0)=  1.516k(oo), s'o that k(t) is not strongly dependent on 
time and the system is close to being reaction (rather than the diffusion) 
controlled. A simple interpretation of the limits W a = W and Wa >> W is 
that in the former the trap is a true point defect, whereas in the latter the 
trap region effectively includes the nearest neighbor sites and thus has a 
finite extent. 

3. REVERSIBLE REACTIONS 

In the continuum case, dissociation of AB to form an unbound pair at 
contact is described by the dissociation rate constant ~Cd. In the lattice case, 
the dissociation of a filled trap occurs when the particle hops to a nearest 
neighbor site with rate Wd. For a simple cubic lattice, these are related by 

~:d= 6W a (11) 

The equilibrium constant in both cases is given by (1"2) 

[AB]eq ~a W~ (12) 
Keq- [A'Ieq [-B-]~q ~d Wd 

where, as mentioned previously, the concentrations on the lattice are 
dimensionless. 

Any theory of reversible reactions must predict that 
[AB]/[A][B]--+ Keq as t---~ oo. The approaches discussed below all have 
this property. For the sake of brevity, we shall focus on the mathematical 
structure, rather than the conceptual basis, of these formalisms. The con- 
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tinuum and lattice cases will be treated in a unified way. Consider the 
equation 

d[A] 
ka(t)[A] [B] +kd( t )[AB ] (13) 

dt 

where ka(t ) and ka(t ) need to be specified. In the modified rate equation 
approach, these are given by (2) 

ka(t) = k(t) (14a) 

kd(t)= k(t) Keq 1 (14b) 

where k(t) is the irreversible time-dependent rate coefficient. Approxi- 
mating k(t) by its long-time limit, one has 

~caks 6Waks 
ka(t) ~- k(oo ) - ~c~ + k~s - 6 Wa + ks (15a) 

tCdks 6Wdks (15b) 
kd(t) ~-k(~176 ) K~qt -~G + k s - 6 W ~  + ks 

where ks is given by Eqs. (4) and (10) in the continuum and lattice cases, 
respectively. When the rate coefficients are specified by Eqs. (15a) and 
(15b), Eq. (13) is identical to the average correlation (AC) approximation 
of ref. 1; this is a widely used rate equation involving the steady-state diffu- 
sion-dependent on and off  rate constants. (9 13) In the modified rate equa- 
tion approach, where the full time dependence of k(t) is used, Eq. (13) can 
be analytically solved for the concentrations, since the substitution 
k(O) ze = S~o k(t ')dt '  converts it into an ordinary bimolecular rate equation. 
The effective time re can be obtained by numerical integration of the 
simulated survival probability [see Eq. (8)]. 

In the superposition approximation approach, one has (2) 

k . ( t ) = k ( t ) -  K~q I t' [-AB(t- z)] dk(z) 
Jo [ A ( t ~ Q ~ ( - ~ - z ) ]  d,: dr (16a) 

kd(t)= ~Ce= 6Wd (16b) 

Since k~(t) explicitly depends on the concentrations, Eq. (13) is now 
nonlinear and has to be solved numerically. This can be done in a 
straightforward way by treating the integral as a discrete sum and using a 
finite-difference approximation for the time derivative. Finally, we mention 
that if the r dependence of the concentrations in Eq. (16a) is ignored (i.e., 
t - z  is replaced by just t), this formalism reduces to the modified rate 
equation approach. (z) 

822/65/5-6-17 



1090 Richards and Szabo 

4. C O M P A R I S O N  OF S I M U L A T I O N S  W I T H  T H E O R Y  

The simulations of the time dependence of the concentrations were 
performed on a 20 x 20 x 20 simple cubic lattice containing 80 traps and 
about 80 particles 3 using an algorithm described previously. (1) The data 
shown below represent averages o v e r  10 4 initial configurations in which 
all traps were empty. The largest Monte Carlo weight used was 0.1 in 
order to ensure that one is describing a random walk in continuous time. 
The irreversible time-dependent rate coefficient that is required for the 
implementation of the various theoretical formalisms was obtained by 
simulating the survival probability of a system containing a single particle 
and a single trap, using a true continuous-time algorithm. (7) Thus, the com- 
parison between theory and simulations does not involve any adjustable 
parameters. 

In Fig. 1, the fraction of traps occupied ( [AB( t ) ] / [B(0 ) ] )  is plotted 
against 6Wt  when Wa = W and Keq = 100. It can be seen that there is 
excellent agreement between the various theories and simulations. The 
results labeled k(oo), which were obtained using the steady-state rate con- 
stants given in Eqs. (15a) and (15b) (the same as the AC approximation of 
ref. 1), deviate from the simulations at short times, as to be expected. The 

3 In the simulation the 8 0 0 0 -  80 = 7920 sites outside of traps were randomly occupied with 
a probability of 10 2. Thus  there was an average of 79.2 particles. This fact was accounted 
for in the values of the equilibrium concentrations. 
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Fig. 1. Fractional occupancy of traps as a function of dimensionless time 6 Wt for Wa = W, 
Keq = 100. Initially all traps were empty. The modified rate equation results are labeled k(t) 
(dotted line). The results obtained using the steady-state on and off  rate constants (the AC 
approximation) are labeled by k(oo) (solid line). The simulation and superposition 
approximation (dashed line) curves are indistinguishable. 
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Fig. 2. Same as Fig. 1, but for W, = 10W, K~q = 100. 

reason for such general good agreement is that when W= W,, k(t) is only 
weakly time dependent [ k ( 0 ) =  1.5k(oe); see above].  Thus, the association 
reaction is close to being reaction controlled (i.e., diffusion is playing only 
a modest role). In this limit, all the theories are equivalent. (2) This is in 
marked contrast to the situation in one dimension, (s) where k(t) is strongly 
time dependent even when W =  HI, (~ = ~c a in the notation of ref. 3). 

In order to provide a more stringent test of the theories, we used the 
device introduced previously, (1) and increase the hopping rate into the trap 
over the bulk hopping rate. In Fig. 2, the fraction occupied is shown as a 
function of 6Wt for W a = 10W and Keq = 100. For this parameter  set k(t) 
is strongly time dependent [k (0 )=6 .5k(oo) ] .  It can be seen that the 
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Fig. 3. The deviation from equilibrium of the normalized trap occupation, 1 -  ]-AB(t}]/ 
[AB]~q), for the same parameters as Fig. 2. The curve with "noise" is the simulation data. 
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modified rate equation results [labeled k(t)] are exact at short times, but 
the equilibrium limit is approached too rapidly. The results obtained using 
the steady-state rate constants [k(~) ,  AC of ref. 1] are poor at short 
times, but are superior to the modified rate equation results at long times. 
The superposition approximation does remarkably well over the entire 
time range. 

A clearer picture of the long-time dependence is given in Fig. 3, where 
the normalized deviation of the trap occupation from its equilibrium value 
( ( 1 -  [AB(t)]/[AB]eq) is plotted. It is now apparent that the relatively 
good agreement of the k(oe) curve found at the longest time examined 
would eventually deteriorate. 

5. C O N C L U D I N G  R E M A R K S  

We have tested two theoretical treatments of second-order reversible 
reactions against simulations on a cubic lattice. Both these approaches can 
be implemented once the equilibrium constant and the time-dependent 
association rate coefficient k( t )  for an irreversible reaction are specified. 
The modified rate equation approach [see Eqs. (13), (14a), and (14b)] is 
very simple to use. The superposition approximation formalism [see 
Eqs.(13), (16a), and (16b)] is considerably more computationally 
demanding. While it is not possible to draw completely general conclusions 
from a limited comparison, it is clear that the superposition approach is 
superior, giving remarkably good agreement over the whole time range. 
The modified rate equation approach is exact at short times. It was found 
to be accurate for all times only when k( t )  is weakly time dependent 
[k(0)<2k(oe)]. However, because of its simplicity, it is a useful 
approximation if one is willing to settle for only semiquantitive agreement 
at long times. 

The modified rate equation formalism predicts that the concentrations 
approach their equilibrium values exponentially. The superposition 
approximation, on the other hand, predicts (2) that equilibrium is 
approached as t-3/2 in three dimensions. This asymptotic behavior was first 
obtained by Zeldovich and Ovchinnikov (m (see also Kang and Redner (15~) 
based on an analysis of fluctuation effects. At first sight it may be surprising 
that the superposition approximation predicts a power-law decay, since it 
is basically a pair theory like the Smoluchowski (mean-field) theory of irre- 
versible reactions. However, we note that for a reversible reaction between 
a single A B pair, the fraction of molecules that are dissociated approaches 
unity as t -3/2 in three dimensions. {16'1v) Finally, we emphasize that this 
power-law behavior is manifested only at very long times when the devia- 
tion from equilibrium is very small. For example, for W= 10Wa, Keq = 100, 
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the s u p e r p o s i t i o n  resul ts  ( ex tended  to t imes longe r  t h a n  s h o w n  in  Fig. 3) 

behave  as t -3/2 on ly  w h e n  6 W t > 1 0 0 0  a n d  ( 1 - [ A B ( t ) ] / [ A B ] e q ) <  
3 x 1 0  3. 
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